REFERENCES

The correct form of reference for this publication, which is based on a meeting of the Association of Applied Biologists, is:

Aspects of Applied Biology 138, Advances in Legume Science and Practice, pp. xx–xx

Papers are included herein without any liability for loss or damage suffered as a result of their application or use. Reference herein to trade names and proprietary products without special acknowledgement does not imply that such names, as defined by the relevant protection laws, may be regarded as unprotected and thus free for general use. No endorsement of named products is intended nor is any criticism implied of similar products which are not mentioned. *Please note* certain names of chemicals featured in this publication are Registered Trademarks.

This publication is copyright under the Berne Convention and the Universal Copyright Convention. All rights reserved. Apart from any relaxation permitted under national copyright laws, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without prior permission of the copyright owners. Permission is not, however, required to copy Abstracts of papers on condition that a full reference to the source* is shown. Multiple copying of the contents of the publication without permission from both The Association of Applied Biologists through the Executive Officer and separately from the author, or other holder of the unilateral copyright, is always illegal.

The Association of Applied Biologists and Editors cannot be held responsible for errors or any consequences arising from the use of information contained in this publication; the views and opinions expressed do not necessarily reflect those of the Association of Applied Biologists and Editors.

ENQUIRIES

Enquiries concerning the technical content of chapters should be addressed directly to the authors but other matters should be directed to the Executive Officer, AAB Office, Warwick Enterprise Park, Wellesbourne, Warwick CV35 9EF, UK.

Printed in UK

Published by the Association of Applied Biologists
Warwick Enterprise Park, Wellesbourne, Warwick CV35 9EF, UK

© 2018 The Association of Applied Biologists

ISSN 0265-1491

INTRODUCTION

Legumes are foodstuffs that are naturally high in protein and also provide micronutrients and essential dietary fibre. They are a key constituent of healthy diets (WHO) and are hugely important in efforts to improve nutrition in the world’s poorest countries. Forage legumes are grown across the European continent in agricultural systems and form the basis of many traditional agricultural systems in Southern Europe. Forage legumes form an important source of protein for grazing livestock whilst grain legumes are used to feed cattle, poultry and pork.

From a food perspective, legumes are a relatively inexpensive source of protein, carbohydrate and other nutrients that are readily available to a large proportion of the world’s population. Grain legumes, including pulses, typically require little processing and have long shelf lives and so generate very little food waste while contributing to food security in remote communities.

From a grower’s perspective, legumes require little if any nitrate fertilisers due to their association with N fixing bacteria, and their inclusion in rotations improves the fertility of soil for following crops. Legumes are also able to access phosphorus in the soil which is not readily available to other crops. Legumes form an integral part of pastures and are included in cover crop mixtures. Many legumes are drought tolerant, which alongside their low requirement for key soil nutrients, allow their cultivation in marginal agricultural areas. Furthermore, the group is characterised by a broad genetic base providing great adaptation potential to climate change.

Environmentally, legumes provide a resource for pollinators, add diversity to modern rotations, fit well into intercropping regimes and perform well in conservation systems. By reducing the use of synthetic N fertilisers, legumes reduce GHG emissions associated with fertiliser manufacture. Furthermore, on a weight for weight basis, GHG emissions associated with legume grain production can be up to 40 fold lower than meat from ruminants and over five fold lower than white meats and fish. Cultivation of legumes can also help to build up stocks of soil organic matter, removing CO\textsubscript{2} from the atmosphere and improving soil quality.

However, despite the multiple advantages of legumes in both agricultural systems and diet, the extent of their cultivation can be limited. Farmers view some legume species as risky due to patchy germination and variable yields, while meat is increasing in popularity as a source of dietary protein (especially in developing countries) while legumes can be perceived as a fad food. For these reasons, it is propitious to bring together a broad range of researchers and stakeholders interested in legumes at this time. Developing more sustainable farming and food systems requires an inter-disciplinary approach and this conference will facilitate both formal and informal discussion which will promote opportunities for future research collaborations. This two-day conference aims to bring together individuals from broad spectrum of disciplines to explore how legume research and practice is advancing, and what parallels exist between specialities.

Christine Watson and Rob Carlton
CONTENTS

Invited speaker
Opportunities for meeting the demand for locally produced protein
CHRISTINE A WATSON, ROBIN L WALKER, FRED L STODDARD & CAIRISTIONA F E TOPP
1–6

What is the potential yield of peas and how can it be achieved?
HELEN F HOLMES, ROGER SLYVESTER-BRADLEY, KEITH COSTELLO, ROGER VICKERS, STEVE BELCHER, JAMES WALLACE & PETE M BERRY
7–14

Grain legume yield instability has increased over 60 years in long-term field experiments as measured by a scale-adjusted coefficient of variation
MORITZ RECKLING, THOMAS F DÖRING, GÖRAN BERGKVIST, FRANK-M CHMIELEWSKI, FREDERICK L STODDARD, CHRISTINE A WATSON, SYLVIA SEDDIG & JOHANN BACHINGER
15–20

The effect of macro and micro nutrition in enhancing grain yield of spring peas and spring beans
SYED SHAH, SARAH HOOKWAY, SARAH WILKINSON, ANDREW RICHARDS & JOHN MARK FLETCHER
21–29

Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use
BAPTISTE DRUT, NATHALIE CASSAGNE, MARIO CANNAVACCIUOLO, GAËTAN LE FLOCH, JOSE COBO & JOËLLE FUSTEC
31–42

Effect of legume-crop mixtures on runoff and soil loss in Africa
TARIRAI MUONI, ERIC KOOMSON, INGRID ÖBORN, CARSTEN MAROHN, CHRISTINE WATSON, GÖRAN BERGKVIST, ANDREW BARNES & ALAN DUNCAN
43–47

Wheat/clover temporary intercropping for weed management. An on-farm study from Central Italy
FERNANDO PELLEGRINI, STEFANO CARLESI & PAOLO BÀRBERI
49–55

DIVERSify-ing for sustainability using cereal-legume ‘plant teams’
A J KARLEY, A C NEWTON, R W BROOKER, R J PAKEMAN, D GUY, C MITCHELL, P P M IANNETTA, M WEIH, C SCHERBER & L KIÆR
57–62

Poster
Different responses to solar ultraviolet (UV) and blue radiation in two accessions of *Vicia faba*
YAN YAN, SUSANNE NEUGART, FREDERICK L STODDARD & PEDRO J APHALO
63–64

Poster
Evaluation of organic matter and nitrogen losses in the preparation of green manure on organic farms
AUSRA ARLAUSKIENE, ZYDRE KADZIULIENE, LINA SARUNAITE, MONIKA TOLEIKIENĖ & SKAIDRE SUPRONIENE
65–66
Invited speaker
Developing rhizobial inoculants to improve grain legume crops in the UK
EUAN K JAMES, PIETRO P M IANNETTA, MARTA MALUK, MARTA BARROS & MARCEL LAFOS
67–68

Dynamic of lupin-cereal intercrop and interaction with soil nitrogen during early stages of development
RIM BACCAR, GUENAELLE HELLOU & JOELLE FUSTEC
69–79

Amino acid fingerprint in the rhizosphere of Pisum sativum in response to water stress
HELENE BOBILLE, JOËLLE FUSTEC, RICHARD J ROBINS, CAROLINE CUKIER & ANIS M LIMAMI
81–84

Invited speaker
Supporting smallholder farmers’ decisions on legume use in East Africa – the LegumeCHOICE approach
A J DUNCAN, I ÖBORN, G NZIGUHEBA, TEMESGEN TAMENE, T MUONI, I OKEYO, M SHILULI, TADESSE BERHANU, J WALANGULULU & B VANLAUWE
85–92

Protein crop options for Scotland with potential for more than one end-use
ROBIN WALKER, CHRISTINE WATSON, JOHN BADDELEY, OLUYINKA OLUKOSSI & JOS HOUDIJK
93–97

Trajectories of legumes insertion in farms: methodological framework for the analysis of long-term changes
EVA REVOYRON, ANDRÉA VIDAL, MARION CASAGRANDE, MARIE-HELENE JEUFFROY, MARIANNE LEBAIL & MARIE MAWOIS
99–107

The potential for Nitrogen-fixing crops to deliver foraging resources for insect pollinators
L J COLE, D ROBERTSON, W HARRISON, J A BADDELEY, R L WALKER & C A WATSON
109–114

Variability between varieties: pollination requirements of faba bean (Vicia faba L.)
JACOB BISHOP, ADREENA LAU & JONATHAN L FRY
115–120

Invited speaker
Transition paths to sustainable legume production
GEOFFREY R SQUIRE & PIETRO P M IANNETTA
121–130

Chilling-dependent inhibition of shoot branching in pea strigolactone synthesis and signalling mutants
YAN HU & CHRISTINE H FOYER
131–134

Use of GROWSCREEN-Rhizo boxes allowed detection of useful differences in root response to water deficit in faba bean (Vicia faba L.)
KIFLEMARIAM Y BELACHEW, KERSTIN A NAGEL, FABIO FIORANI & FREDERICK L STODDARD
135–140

Genetic diversity and strategies for seed quality enhancement in Pisum (pea)
TRACEY RAYNER, CAROL MOREAU, PETER G ISAAC & CLAIRE DOMONEY
141–145