International Advances in Pesticide Application

Hof Wageningen, Wageningen, the Netherlands

10-12 January 2012

Produced by the Association of Applied Biologists

Copies available from: The AAB Office
Warwick Enterprise Park, Wellesbourne,
Warwick CV35 9EF, UK
http://www.aab.org.uk
REFERENCES

The correct form of reference for this publication, which is based on a meeting of the Association of Applied Biologists, is:

Aspects of Applied Biology 114, International Advances in Pesticide Application, pp. xx–xx

Papers are included herein without any liability for loss or damage suffered as a result of their application or use. Reference herein to trade names and proprietary products without special acknowledgement does not imply that such names, as defined by the relevant protection laws, may be regarded as unprotected and thus free for general use. No endorsement of named products is intended nor is any criticism implied of similar products which are not mentioned. Please note certain names of chemicals featured in this publication are Registered Trademarks.

This publication is copyright under the Berne Convention and the Universal Copyright Convention. All rights reserved. Apart from any relaxation permitted under national copyright laws, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without prior permission of the copyright owners. Permission is not, however, required to copy Abstracts of papers on condition that a full reference to the source* is shown. Multiple copying of the contents of the publication without permission from both The Association of Applied Biologists through the Executive Officer and separately from the author, or other holder of the unilateral copyright, is always illegal.

The Association of Applied Biologists and Editors cannot be held responsible for errors or any consequences arising from the use of information contained in this publication; the views and opinions expressed do not necessarily reflect those of the Association of Applied Biologists and Editors.

ENQUIRIES

Enquiries concerning the technical content of chapters should be addressed directly to the authors but other matters should be directed to the Executive Officer, AAB Office, Warwick Enterprise Park, Wellesbourne, Warwick CV35 9EF, UK.

Printed in UK

Published by the Association of Applied Biologists
Warwick Enterprise Park, Wellesbourne, Warwick CV35 9EF, UK

© 2012 The Association of Applied Biologists

ISSN 0265-1491

INTRODUCTION

This international event marks the 12th anniversary of this biennial conference and provides an opportunity to discuss pesticide (and bio pesticide) application issues in an informal setting with platform and poster presentations. Key workers from research institutes, industry and regulatory authorities provide a unique mix of biological and engineering sciences.

While global economies have suffered turmoil since the last conference in 2010, the demand for agriculture to provide sustenance for an ever growing population continues. As standards of living improve in less fortunate populations the associated dietary changes will further the demand on land and water resources. In addition to this, it is not just food production that vies for these finite resources but crops for energy production and other industrial uses. While the application of pesticides and bio pesticides offer opportunities in maximising production on an industrial scale it must be remembered that assistance on a small scale can also offer considerable benefits. The papers presented here contribute to the wealth of knowledge needed to support a safe, sustainable and efficient industry.

Invited speakers included:

Dr Mike Bushell (Syngenta, Jealott’s Hill International Research Centre, Bracknell, UK)
Prof. Heinz Ganzelmeier (Julius Kühn Institute, Braunschweig, Germany)

Key topic areas for sessions include:

- Handheld Application Techniques
- International Regulations and Standards
- Application of Biopesticides/Biocontrol
- Formulation/Adjuvants
- Bystander and Operator Exposure
- Precision Crop Spraying/Target Sensing Techniques
- Sprayer Loading and Cleaning/Point Source Pollution
- Control Systems for Sprayers/GPS Technology
- Spray Drift
- Spray Physics and Application Variables
- Crop Adapted Spraying
- On Target Deposition
- Greenhouse Applications
- Fruit/Vine/Vegetable Spraying

Thanks go to the session organisers (Tom Robinson, Ben Magri, Colin Mountford-Smith, Jan van de Zande, Paolo Balsari, Bill Taylor, Simon Cooper, Richard Glass, David Stock, Paul Miller, Philip Carpenter, Per Gummer Andersen and Bill Jones) for their work on editing the papers and finally to Carol, Claire and Bernadette at the AAB Office for organising the conference and producing this book.

Simon Cooper
Convener, Pesticide Application Group
secooper@harper-adams.ac.uk
<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment of droplet size and flow rate of nozzles used on knapsack sprayers</td>
<td>1–7</td>
</tr>
<tr>
<td>P BALSARI, M TAMAGNONE, G OGGERO & P MARUCCO</td>
<td></td>
</tr>
<tr>
<td>Application of the revised EU Machinery Directive on knapsack sprayers by the new EN ISO 19932</td>
<td>9–14</td>
</tr>
<tr>
<td>A HERBST</td>
<td></td>
</tr>
<tr>
<td>Evaluation of spray patterns from motorised air-assisted knapsack sprayers</td>
<td>15–20</td>
</tr>
<tr>
<td>PAOLO BALSARI, GIANLUCA OGGERO, CLAUDIO BOZZER & ANDREAS HERBST</td>
<td></td>
</tr>
<tr>
<td>Sprayer pump performance: first results of tests carried out according to the new ISO standard</td>
<td>21–27</td>
</tr>
<tr>
<td>M TAMAGNONE, P BALSARI, C BOZZER & P MARUCCO</td>
<td></td>
</tr>
<tr>
<td>Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on cauliflower and savoy cabbage</td>
<td>29–35</td>
</tr>
<tr>
<td>E BRUSSELMAN, B BECK, S POLLET, F TEMMERMAN, M MOENS & D NUYTTENS</td>
<td></td>
</tr>
<tr>
<td>Increasing effectiveness of foliar-applied entomopathogenic nematodes with adjuvants</td>
<td>37–39</td>
</tr>
<tr>
<td>B BECK, E BRUSSELMAN, D NUYTTENS, S POLLET, F TEMMERMAN, W STEURBAUT & P SPANOGHE</td>
<td></td>
</tr>
<tr>
<td>Spraying distribution and sizes of droplets with adjuvant on spraying liquid and distance between nozzles and laser beam analyser</td>
<td>41–49</td>
</tr>
<tr>
<td>M C FERREIRA & R A A ROMÁN</td>
<td></td>
</tr>
<tr>
<td>Kinetics of surface tension and contact angle of droplets with addition of adjuvant on soybean leaves</td>
<td>51–56</td>
</tr>
<tr>
<td>ARTUR FRANCO BARRÊTO, MARCELO DA COSTA FERREIRA & LILIAN LÚCIA COSTA</td>
<td></td>
</tr>
<tr>
<td>Assessment of effects of anti-drift adjuvants on spray quality and potential drift generated by field crop sprayers</td>
<td>57–63</td>
</tr>
<tr>
<td>P MARUCCO, P BALSARI & C BOZZER</td>
<td></td>
</tr>
<tr>
<td>The integration of an aerial pesticide application model AGDISP with an air quality model CALPUFF</td>
<td>65–69</td>
</tr>
<tr>
<td>J A S BONDS, J S SCIRE, D G STRIMAITIS & H W THISTLE</td>
<td></td>
</tr>
<tr>
<td>Spray drift: How emulsions influence the performance of agricultural sprays produced through a conventional flat fan nozzle</td>
<td>71–78</td>
</tr>
<tr>
<td>E HILZ, A W P VERMEER, F A M LEERMakers & M A COHEN STUART</td>
<td></td>
</tr>
<tr>
<td>Probabilistic risk assessment of bystander and resident exposure to spray drift from an agricultural boom sprayer</td>
<td>79–86</td>
</tr>
<tr>
<td>M C KENNEDY, M C BUTLER ELLIS & P C H MILLER</td>
<td></td>
</tr>
<tr>
<td>Development of techniques to measure vapour concentrations of pesticides to determine potential bystander and resident exposure</td>
<td>87–90</td>
</tr>
<tr>
<td>C R GLASS, J J MATHERS, M T HETMANSKI, M SEHNAloVA & R J FUSSELL</td>
<td></td>
</tr>
</tbody>
</table>
Advances in autonomous pesticide application technology for orange groves
ANDREW LANDERS, WILLIAM LARZELERE & BRAD MUISE 91–98

Algorithms for variable rate application of crop protection products
C KEMPENAAR, J M MICHELSSEN & J C VAN DE ZANDE 99–104

Herbicide weed control on pavements: Advances in application technology
C KEMPENAAR, J M MICHELSSEN & C J van DIJK 105–112

The development and field evaluation of a system for the spot treatment of volunteer potatoes in vegetable crops
PAUL MILLER, NICK TILLETT, TONY HAGUE & ANDREW LANE 113–120

Development of sensor guided precision sprayers
A NIEUWENHUIZEN & J C VAN DE ZANDE 121–128

Crop Adapted Spray Application (CASA) - Precise and safe plant protection in fruit growing
G DORUCHOWSKI, P BALSARI, P MARUCCO, J VAN DE ZANDE & M WENNEKER 129–136

A new method for testing GPS based boom section switching systems
A HERBST, H-J OSTEROTH & M SPRANGER 137–142

Environmentally Optimised Sprayer (EOS) - Evaluation of spray equipment to mitigate point and diffuse source losses of Plant Protection Products (PPP) to water
M ROETTELE, P BALSARI, G DORUCHOWSKI & H J WEHMANN 143–150

External loading of an orchard sprayer with agrochemicals during application
J M G P MICHELSSEN, J C VAN DE ZANDE, M WENNEKER, H STALLINGA & P VAN VELDE 151–157

The development and evaluation of nozzle systems for use in targeted spot spraying applications
PAUL MILLER, NICK TILLETT, TREVOR SWAN, CLIVE TUCK & ANDREW LANE 159–166

Assessment of parameters needed to design agitation systems for sprayer tanks
M TAMAGNONE, P BALSARI, C BOZZER & P MARUCCO 167–174

The loading of agricultural sprayers with Water Dispersible Granule formulations: Towards better label guidance
D HARRIS, A FOWLES, V DUMONTET, W A TAYLOR & S E COOPER 175–179

FlexiDose – a spraying system developed for variable pesticide dosage without using pesticide injection methods
N BJUGSTAD, T ENSBY, E H HOLTH, O K MOEN & H F THORSTENSEN 181–188

Integrated actuator for real time control of spray nozzle flow rate and droplet size spectrum
D L NEEDHAM, A J HOLTZ & D K GILES 189–196

An autonomous self-propelled sprayer for safer pesticide application in glasshouse
P BALSARI, G OGGERO, C BOZZER & P MARUCCO 197–204
Spray drift influence at the watershed level: The case of the Gibeault-Delisle (Quebec)

C SINFORT & B PANNETON
205–214

A drift-calculation tool based on spray drift field measurements in field crops

T T GROOT, H J HOLTERMAN & J C VAN DE ZANDE
215–223

Drift reducing performance comparison of shield sprayers

JING ZHANG, JIANLI SONG & XIONGKUI HE
225–231

Intensive research is essential for high-quality standardisation - Some examples of work at The Julius Kühn Institute relating to the development of standards relevant to pesticide application techniques

H GANZELMEIER
233–234

Drift from fruit sprayers – why not prevent it at source?

ANDREW LANDERS
235–242

Development of a fully automated high-resolution mechanical spray patternator

I LUND, J CORTSEN & D SØLVASON
243–251

Nozzle classification for drift reduction in orchard spraying

J C VAN DE ZANDE, M WENNEKER, J M G P MICHELENS, H STALLINGA, P VAN VELDE & N JOOSTEN
253–260

Comparison of spray retention on synthetic superhydrophobic surface with retention on outdoor grown wheat leaves

M MASSINON & F LEBEAU
261–268

Critical issues in the evaluation of spraying quality of canon mist blowers: a methodological case study

J P DOUZALS, E COTTEUX & M ROMBAUT
269–277

Implications for pesticide delivery and insecticide selection using chemical analysis of plant tissue and efficacy

R C DERKSEN, L A CANAS, C M RANGER, M E REDING & H E OZKAN
279–286

Batch effect of the fluorescent tracer BSF on breakdown in sunlight and storage time

H STALLINGA, J C VAN DE ZANDE, J M G P MICHELENS, P VAN VELDE & H J HOLTERMAN
287–292

Effect of multi nozzle fans on droplet size distribution and droplet velocity

T T GROOT, H J HOLTERMAN & J C VAN DE ZANDE
293–300

Effect of nozzle design on reaction thrust and spray dynamics

J FANG & D K GILES
301–308

Variable-dimension air-jet for improved pesticide application with sprayers inside herb greenhouses

A GAMLIEL, Y RIVEN & B STEINER
309–315

Influence of application equipment on deposition of spray droplets in wheat canopy

H E OZKAN, P PAUL, R C DERKSEN & H ZHU
317–324
New technologies adapted to alternative dose expression concepts

E GIL, J LLORENS & J LLOP
325–333

Dose rate expression – need for harmonisation and consequences of the leaf wall area approach

RALPH-BURKHARDT TOEWS & REINHARD FRIESSLEBEN
335–340

Control of *Spodoptera frugiperda* by directed row spraying of insecticide at conjugated operation in a maize crop

M C FERREIRA, R A A ROMÁN, W C PAZZINI, G J LEITE & S FURUHASHI
341–346

Distribution of spray applied to a cereal crop and the effect of application parameters on penetration

M C BUTLER ELLIS, A G LANE & C M O’SULLIVAN
347–354

An integrated study to improve spray deposition in a dense crop with a horizontal leaf position

D FOQUÉ, J G PIETERS & D NUYTTENS
355–362

Field measurements to support dose adjustment for efficient use of potato spraying products

P J WALKLATE, J V CROSS, A HARRIS & G M RICHARDSON
363–369

Improvements of pesticide handling in greenhouse situations

K LÖFKVIST & S A SVENSSON
371–378

Modelling the emission of pesticides from covered structures to air

H J HOLTERMAN, A A SAPOUNAS, S BEULKE, E A VAN OS & C R GLASS
379–386

Spatial distribution of plant protection products in soilless cultivation in a greenhouse and effect on emission to surface water

E A VAN OS, M VAN DER STAIIJ & J M P G MICHELESEN
387–393

Assessment of orchard sprayers using laboratory trials

D DEKEYSER, D FOQUE, A M ENDALEW, P VERBOVEN, T GOOSSENS, N HENDRICKX & D NUYTTENS
395–403

Assessment of orchard sprayers using field trials

N HENDRICKX, T GOOSSENS, A M ENDALEW, D DEKEYSER, D NUYTTENS & P VERBOVEN
405–412

Assessment of orchard sprayers using computational fluid dynamics

A M ENDALEW, D DEKEYSER, D NUYTTENS, T GOOSSENS, N HENDRICKX, A T DUGA, B NICOLAÏ & P VERBOVEN
413–420

Advanced drift reduction in orchard spraying

M WENNEKER, A T NIEUWENHUIZEN, J C VAN DE ZANDE, P BALSARI, G DORUCHOWSKI & P MARUCCO
421–428

Posters

Spray drift reduction in Greek conditions: A pilot study in the Ecopest project

ANGELOS TSAKIRAKIS, RICHARD GLASS, KONSTANTINOS KASIO TIS & KYRIAKI MACHERA
429-430
Experimental and numerical study of pesticide dispersal from vineyards
A CHAHINE, S DUPONT, C SINFORT & Y BRUNET 431–436

Droplet diameter and leaf retention of spray formulations of commercial fungicides
H B N CAMPOS, R E LEMOS, G M MANZ & M C FERREIRA 437–440

Effect of spray nozzles and concentration of spray solution in control of Ipomeoa spp. in pre-emergence
H B N CAMPOS, R E LEMOS, L L COSTA & M C FERREIRA 441–444

Effect of formulation on spray drift: A case study for commercial imidacloprid products
E HILZ & A W P VERMEER 445–450

Innovations2: Towards a new sustainable growing system, based on ten innovations
E HEES, P C LEENDERTSE & J VAN DE ZANDE 451–452

Collection of farm survey data in six EU MS for risk assessment of non-dietary cumulative exposure to plant protection products
RICHARD GLASS, DAVID GARTHWAITE, ANGELA SACCHI, PIETER SPANOGHE, KIM DOAN NGOC, BERT BECK, KYRIAKI MACHERA, DIMITRA NIKOLOPOULOU, NIKI ARAPAKI, RIANDA GERRITSEN-EBBEN, SUZANNE SPAAN, FRANCISCO EGEA GONZÁLEZ & STANISLAW STOBIECKI 453–454

Droplet flows during the application of biopesticides
S VEREMIEIEV, A BROWN, A CUTHBERTSON, C R GLASS, J J MATHERS, P H GASKELL, N KAPUR & H M THOMPSON 455–458

Developing a new operator exposure model for plant protection products within the EU BROWSE project
RIANDA GERRITSEN-EBBEN, RICHARD GLASS, HENK GOEDE, JODY SCHINKEL, SUZANNE SPAAN, AGATHI CHARISTOU, NIKI ARAPAKI, KYRIAKI MACHERA, MARC KENNEDY & ANDY HART 459–460

Dose algorithms for a sensor guided orchard sprayer
F D SIJBRANDIJ, A T NIEUWENHUIZEN & J C VAN DE ZANDE 461–464

A device for counting and measuring spray droplets
MICK BRADY, STEPHEN KATELEY & RICHARD GODDARD 465–467